| Please check the examination details below | w before entering your candidate information | | | | | | | |---|--|--|--|--|--|--|--| | Candidate surname | Other names | | | | | | | | Pearson Edexcel International Advanced Level | re Number Candidate Number | | | | | | | | Thursday 21 January 2021 | | | | | | | | | Afternoon (Time: 1 hour 20 minutes) Paper Reference WCH16/01 | | | | | | | | | Chemistry | | | | | | | | | International Advanced Level Unit 6: Practical Skills in Chemistry II | | | | | | | | | You must have:
Scientific calculator | Total Marks | | | | | | | #### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. - Show all your working in calculations and include units where appropriate. ### Information - The total mark for this paper is 50. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. #### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ P67820A ©2021 Pearson Education Ltd. 1/1/1/1/1 ## Answer ALL the questions. Write your answers in the spaces provided. - 1 A student carries out some tests on four aqueous solutions **A**, **B**, **C** and **D**. One of the solutions is aqueous barium chloride, BaCl₂(aq). - (a) The student is asked to add **A** to samples of **B**, **C** and **D** in separate test tubes, a **small** amount at a time, until there is no further change. The container of solution **A** has a hazard label. (i) Identify the hazard indicated by this label. (1) (ii) Describe how you would add small amounts of ${\bf A}$ until there is no further change. Name the apparatus you would use. (2) | When A is added to C , vigorous effervescence occurs and the gas produced urns limewater cloudy. Identify, by name or formula, the gas produced. Suggest the identity, by name or formula, of the anion in C . | (1) | |---|--| | urns limewater cloudy.
dentify, by name or formula, the gas produced. | | | | | | uggest the identity, by name or formula, of the anion in C . | (1) | | | | | dentify A by name or formula. Justify your answer. | (2) | | | | | | | | When A is added to D no change is seen. A small amount of this mixture is added to B and a white precipitate forms. | | | uggest what can be deduced about solutions B and D . olution B | (2) | | olution D | | | | | | | Then A is added to D no change is seen. small amount of this mixture is added to B and a white precipitate forms. suggest what can be deduced about solutions B and D . | (vi) A concentrated solution of ammonia is added to **B**. Initially a pale blue precipitate forms. When more ammonia is added, the precipitate dissolves forming a dark blue solution **F**. Identify, by name or formula, the pale blue precipitate and the species responsible for the dark blue colour in **F**. (2) (vii) A solution of the sodium salt of EDTA, Na₄EDTA, is added to a sample of solution **F**. The solution turns pale blue. Write an equation for the reaction. State symbols are not required. (2) (Total for Question 1 = 14 marks) # **BLANK PAGE** 2 Students were told to determine the concentration of a solution of potassium chlorate(V), KClO₃ . Two methods were used: precipitation and titration. Method 1 – Precipitation - Step **1** Bubble excess sulfur dioxide, SO₂, into 100 cm³ of the potassium chlorate(V) solution. - Step **2** Boil the resulting mixture to remove excess SO₂ and then add silver nitrate solution until no more silver chloride precipitate forms. Step 3 Filter, dry and weigh the precipitate. The equation for the reaction in Step 1 is shown. $$CIO_3^-(aq) + 3SO_2(g) + 3H_2O(I) \rightarrow CI^-(aq) + 6H^+(aq) + 3SO_4^{2-}(aq)$$ (a) Identify the main hazard in Step 1, giving a safety precaution that will reduce the risk. Assume that safety spectacles and a laboratory coat were used. (b) The reaction in Step **2** produced 0.430 g of a white precipitate of silver chloride, AgCl. Calculate the concentration of $KClO_3$ in the solution, in mol dm⁻³, found using Method 1. You **must** show your working. (2) | (c) | A student who used Method 1 obtained a value that was significantly larger than | |-----|---| | | the actual concentration of the solution. | Explain **one** possible source of experimental error which might lead to this result. (2) Method 2 – Titration - Step 1 Mix a sample of potassium chlorate(V) solution with an acidified solution containing iron(II) sulfate, FeSO₄ - Step 2 Remove the chloride ions produced in Step 1. - Step **3** Determine the concentration of excess iron(II) ions by titrating the whole of the solution with a standard solution of potassium manganate(VII). The equation for the reaction in Step 1 is shown. $$CIO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow CI^{-}(aq) + 6Fe^{3+}(aq) + 3H_{2}O(I)$$ (d) Give the colour change observed in Step 1. (1) | (e) Describe how to carry out the titration in Step 3. You should identify suitable apparatus and any additional chemicals required. | (5) | |--|-----| | | (5) | (f) In Method 2, 50.0 cm³ of potassium chlorate(V) was mixed with 150 cm³ of 0.0750 mol dm⁻³ of iron(II) sulfate. The iron (II) sulfate was in excess. The whole of this solution required 9.25 cm³ of 0.050 mol dm⁻³ of potassium manganate(VII) to completely react. The equations for the reactions are $$CIO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow CI^{-}(aq) + 6Fe^{3+}(aq) + 3H_{2}O(I)$$ $$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(I)$$ Calculate the concentration, in mol dm^{-3} , of the potassium chlorate(V) solution. You **must** show your working. (6) | | (Total for Question 2 – 20 ma | rks) | |-----|--|------| | | | | | | | | | | | | | | | | | (g) | Explain the change, if any, to the value calculated in (f) if the chloride ions were not removed before the reaction in Step 3 of Method 2. | (2) | | , , | | | **3** Azo dyes, such as Organol Brown, can be made from benzene, C_6H_6 , using the reaction scheme shown. Due to the toxicity of benzene, the first step is never carried out in a school laboratory. (a) In the preparation of nitrobenzene, benzene is added slowly to a mixture of chloride The mixture is warmed at 55°C under reflux for 45 minutes. The reaction mixture is stirred continuously. (i) State why a reflux condenser is needed when the mixture is warmed. concentrated nitric and sulfuric acids. (1) (ii) Draw a diagram of the apparatus used to warm under reflux in this experiment. (3) (iii) Suggest why the reaction mixture is stirred continuously. (2) | | dentify a suitable drying agent. | (1) | |------------|---|-------| | (c) N | litrobenzene is then reduced to phenylamine, $C_6H_5NH_2$. | | | | Phenylamine reacts with nitrous acid at a temperature between 0°C and 10°C to orm a diazonium compound. | | | (i | Nitrous acid is formed in the reaction mixture using sodium nitrite
and hydrochloric acid. | | | | State why nitrous acid is generated in the reaction mixture instead of being obtained from a chemical supplier. | (1) | | | | (- / | | | | | | | | | | (1 | ii) Explain why the temperature of the reaction between phenylamine and nitrous acid must be neither lower than 0°C nor higher than 10°C. | (0) | | | | (2) | (d) Reaction of the diazonium compound with an alkaline solution of naphthalene-1-ol produces the solid azo dye, Organol Brown. The solid is purified by recrystallisation. Procedure Step 1 The impure Organol Brown is dissolved in a minimum volume of hot solvent. Step 2 The solution is filtered hot through a preheated funnel. Step 3 The solution is cooled and filtered using a Buchner funnel. Step 4 The solid is rinsed with a small amount of ice-cold solvent. Step 5 The solid is dried in a desiccator. (i) State why a **minimum** volume of hot solvent is used in Step 1. (1) (ii) Explain why a preheated funnel is used in Step 2. (1) (iii) Give a reason for each of the two filtrations in Steps 2 and 3. (2) (iv) Give a possible reason why it is preferable to dry the solid in a desiccator rather than in an oven in Step **5**. (1) | (e) | The melting temperature of the recrystallised Organol Brown is measured to check its purity. | | | | |-----|--|-----|--|--| | | State what you would observe if the sample was pure. | (1) | | | | | | | | | | | (Total for Question 3 = 16 marks) | | | | **TOTAL FOR PAPER = 50 MARKS** | | 0 (8) | (18)
He
hetium
2 | 20.2
Ne neon | 39.9
Ar
argon
18 | 83.8
Kr
krypton
36 | Xe
xenon
54 | [222]
Rn
radon
86 | pa | | | |--------------------------------|-------|----------------------------------|---|----------------------------------|--------------------------------------|--|---|--|---|--| | | 1 | (71) | 19.0
F
fluorine
9 | 35.5
Cl
chlorine
17 | 79.9
Br
bromine
35 | 126.9
I
iodine
53 | [210] At astatine 85 | een report | 175
Lu
lutetium
71 | [257] Lr lawrencium | | | 9 | (16) | 16.0
O
oxygen
8 | 32.1
S
sulfur
16 | 79.0
Se
selenium
34 | 127.6 Te tellurium 52 | [209] Po polonium 84 | 116 have b
ticated | 173
Yb
ytterbium
70 | [254] No nobelium | | | 'n | (15) | 14.0
N
nitrogen
7 | 31.0 P phosphorus | 74.9
AS
arsenic
33 | 121.8
Sb
antimony
51 | 209.0
Bi
bismuth
83 | Elements with atomic numbers 112-116 have been reported
but not fully authenticated | 169
Tm
thulium
69 | [256]
Md
mendelevium | | | 4 | (14) | 12.0
C
carbon
6 | 28.1
Silicon
14 | 72.6
Ge
germanium
32 | 50
Sn
So
50 | 207.2
Pb
lead
82 | atomic nun
but not fu | 167
Er
erbium
68 | [253]
Fm
fermium | | | m | (13) | 10.8
B
boron
5 | 27.0
Al
aluminium
13 | Ga
gallium s | 114.8
In
indium
49 | 204.4
T1
thallium
81 | ents with | 165
Ho
holmium
67 | [254] Es einsteinium | | ents | | (12) | | | 65.4 Zn zinc 30 | Cd
Cd
cadmium
48 | 200.6
Hg
mercury
80 | Eleme | 163
Dy
dysprosium
66 | [251] [254] Cf Es californium einsteinium | | Lieu | | | 63.5
Cu
copper
29 | 107.9
Ag
silver
47 | 197.0
Au
gold
79 | [272] Rg roentgenium | 159
Tb
terbium 65 | [245] BK berkelium | | | | e of I | | | | (01) | 58.7
Ni
nicket
28 | Pd
Pd
palladium
46 | Pt
Pt
platinum
78 | Ds
darmstadtium i | 157
Gd
gadolinium
64 | [247]
Cm | | laD. | | | | (6) | 58.9
Co
cobalt
27 | Rh
rhodium
45 | 192.2
Ir
iridium
77 | [268]
Mt
meitnerium
109 | 152
Eu
europium
63 | [243]
Am
americium | | The Periodic Table of Elements | | 1.0 H Hydrogen 1 | | (8) | 55.8 Fe iron 26 | Ru
Ru
ruthenium
44 | 190.2
Os
osmium
76 | [277]
Hs
hassium
108 | 150
Sm
samarium
62 | [242] Pu plutonium | | ח | | | | (0) | 54.9
Mn
manganese
25 | [98] Tc technetium 43 | 186.2
Re
rhenium
75 | [264] Bh bohrium 107 | [147] Pm promethium 61 | 238 [237] [242] [243] U Np Pu Am uranium neptunium plutonium americium | | | | | | mass
ool
umber | (9) | 52.0 54.9 Cr Mn chromium manganese 24 25 | 95.9 [98] 101.1
Mo Tc Ru molybdenum technetium ruthenium 42 43 44 | 183.8
W
tungsten
74 | [266] | 144
Nd
neodymium
60 | | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | (5) | 50,9
V
vanadium
23 | 92.9
Nb
niobium
41 | 180.9 Ta tantalum 73 | [262] Db dubnium 105 | 141 144 [147] 150 Pr Nd Pm Sm praecodymium neodymium promethium 59 60 61 62 | [231]
Pa
protactinium | | | | | relati
ato
atomic | <i>(</i> £) | 47.9
Ti
titanium
22 | 91.2
Zr
zirconium
40 | 178.5
Hf
hafnium
72 | [261] Rf rutherfordium 104 | 140
Ce
cerium
58 | 232
Th
thorium | | | | | | (3) | 45.0
Sc
scandfum
21 | 88.9
Y
yttrium
39 | 138.9
La*
lanthanum
57 | [227]
Ac*
actinium
89 | N N | | | | 7 | (2) | 9.0
Be
beryllium
4 | 24.3
Mg
magnesium
12 | 40.1
Ca
calcium
20 | 87.6
Sr
strontium
38 | 137.3
Ba
barium
56 | [226] Ra radium 88 | * Lanthanide series
* Actinide series | | | | F | (1) | 6.9
Li
lithium
3 | Na
Sodium
11 | 39.1
K
potassium
19 | 85.5
Rb
rubidium
37 | 132.9
Cs
caesium
55 | [223]
Fr
franctum
87 | * Lanth | |