Please check the examination details below	w before entering your candidate information						
Candidate surname	Other names						
Pearson Edexcel International Advanced Level	re Number Candidate Number						
Thursday 21 January 2021							
Afternoon (Time: 1 hour 20 minutes) Paper Reference WCH16/01							
Chemistry							
International Advanced Level Unit 6: Practical Skills in Chemistry II							
You must have: Scientific calculator	Total Marks						

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P67820A
©2021 Pearson Education Ltd.
1/1/1/1/1

Answer ALL the questions. Write your answers in the spaces provided.

- 1 A student carries out some tests on four aqueous solutions **A**, **B**, **C** and **D**. One of the solutions is aqueous barium chloride, BaCl₂(aq).
 - (a) The student is asked to add **A** to samples of **B**, **C** and **D** in separate test tubes, a **small** amount at a time, until there is no further change.

The container of solution **A** has a hazard label.

(i) Identify the hazard indicated by this label.

(1)

(ii) Describe how you would add small amounts of ${\bf A}$ until there is no further change. Name the apparatus you would use.

(2)

When A is added to C , vigorous effervescence occurs and the gas produced urns limewater cloudy. Identify, by name or formula, the gas produced. Suggest the identity, by name or formula, of the anion in C .	(1)
urns limewater cloudy. dentify, by name or formula, the gas produced.	
uggest the identity, by name or formula, of the anion in C .	(1)
dentify A by name or formula. Justify your answer.	(2)
When A is added to D no change is seen. A small amount of this mixture is added to B and a white precipitate forms.	
uggest what can be deduced about solutions B and D . olution B	(2)
olution D	
	Then A is added to D no change is seen. small amount of this mixture is added to B and a white precipitate forms. suggest what can be deduced about solutions B and D .

(vi) A concentrated solution of ammonia is added to **B**. Initially a pale blue precipitate forms. When more ammonia is added, the precipitate dissolves forming a dark blue solution **F**.

Identify, by name or formula, the pale blue precipitate and the species responsible for the dark blue colour in **F**.

(2)

(vii) A solution of the sodium salt of EDTA, Na₄EDTA, is added to a sample of solution **F**. The solution turns pale blue.

Write an equation for the reaction. State symbols are not required.

(2)

(Total for Question 1 = 14 marks)

BLANK PAGE

2 Students were told to determine the concentration of a solution of potassium chlorate(V), KClO₃ . Two methods were used: precipitation and titration.

Method 1 – Precipitation

- Step **1** Bubble excess sulfur dioxide, SO₂, into 100 cm³ of the potassium chlorate(V) solution.
- Step **2** Boil the resulting mixture to remove excess SO₂ and then add silver nitrate solution until no more silver chloride precipitate forms.

Step 3 Filter, dry and weigh the precipitate.

The equation for the reaction in Step 1 is shown.

$$CIO_3^-(aq) + 3SO_2(g) + 3H_2O(I) \rightarrow CI^-(aq) + 6H^+(aq) + 3SO_4^{2-}(aq)$$

(a) Identify the main hazard in Step 1, giving a safety precaution that will reduce the risk.

Assume that safety spectacles and a laboratory coat were used.

(b) The reaction in Step **2** produced 0.430 g of a white precipitate of silver chloride, AgCl.

Calculate the concentration of $KClO_3$ in the solution, in mol dm⁻³, found using Method 1.

You **must** show your working.

(2)

(c)	A student who used Method 1 obtained a value that was significantly larger than
	the actual concentration of the solution.

Explain **one** possible source of experimental error which might lead to this result.

(2)

Method 2 – Titration

- Step 1 Mix a sample of potassium chlorate(V) solution with an acidified solution containing iron(II) sulfate, FeSO₄
- Step 2 Remove the chloride ions produced in Step 1.
- Step **3** Determine the concentration of excess iron(II) ions by titrating the whole of the solution with a standard solution of potassium manganate(VII).

The equation for the reaction in Step 1 is shown.

$$CIO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow CI^{-}(aq) + 6Fe^{3+}(aq) + 3H_{2}O(I)$$

(d) Give the colour change observed in Step 1.

(1)

(e) Describe how to carry out the titration in Step 3. You should identify suitable apparatus and any additional chemicals required.	(5)
	(5)

(f) In Method 2, 50.0 cm³ of potassium chlorate(V) was mixed with 150 cm³ of 0.0750 mol dm⁻³ of iron(II) sulfate. The iron (II) sulfate was in excess.

The whole of this solution required 9.25 cm³ of 0.050 mol dm⁻³ of potassium manganate(VII) to completely react.

The equations for the reactions are

$$CIO_{3}^{-}(aq) + 6Fe^{2+}(aq) + 6H^{+}(aq) \rightarrow CI^{-}(aq) + 6Fe^{3+}(aq) + 3H_{2}O(I)$$

$$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(I)$$

Calculate the concentration, in mol dm^{-3} , of the potassium chlorate(V) solution. You **must** show your working.

(6)

	(Total for Question 2 – 20 ma	rks)
(g)	Explain the change, if any, to the value calculated in (f) if the chloride ions were not removed before the reaction in Step 3 of Method 2.	(2)
, ,		

3 Azo dyes, such as Organol Brown, can be made from benzene, C_6H_6 , using the reaction scheme shown.

Due to the toxicity of benzene, the first step is never carried out in a school laboratory.

(a) In the preparation of nitrobenzene, benzene is added slowly to a mixture of

chloride

The mixture is warmed at 55°C under reflux for 45 minutes. The reaction mixture is stirred continuously.

(i) State why a reflux condenser is needed when the mixture is warmed.

concentrated nitric and sulfuric acids.

(1)

(ii) Draw a diagram of the apparatus used to warm under reflux in this experiment.

(3)

(iii) Suggest why the reaction mixture is stirred continuously.

(2)

	dentify a suitable drying agent.	(1)
(c) N	litrobenzene is then reduced to phenylamine, $C_6H_5NH_2$.	
	Phenylamine reacts with nitrous acid at a temperature between 0°C and 10°C to orm a diazonium compound.	
(i	 Nitrous acid is formed in the reaction mixture using sodium nitrite and hydrochloric acid. 	
	State why nitrous acid is generated in the reaction mixture instead of being obtained from a chemical supplier.	(1)
		(- /
(1	ii) Explain why the temperature of the reaction between phenylamine and nitrous acid must be neither lower than 0°C nor higher than 10°C.	(0)
		(2)

(d) Reaction of the diazonium compound with an alkaline solution of naphthalene-1-ol produces the solid azo dye, Organol Brown. The solid is purified by recrystallisation. Procedure Step 1 The impure Organol Brown is dissolved in a minimum volume of hot solvent. Step 2 The solution is filtered hot through a preheated funnel. Step 3 The solution is cooled and filtered using a Buchner funnel. Step 4 The solid is rinsed with a small amount of ice-cold solvent. Step 5 The solid is dried in a desiccator. (i) State why a **minimum** volume of hot solvent is used in Step 1. (1) (ii) Explain why a preheated funnel is used in Step 2. (1) (iii) Give a reason for each of the two filtrations in Steps 2 and 3. (2)

(iv) Give a possible reason why it is preferable to dry the solid in a desiccator rather than in an oven in Step **5**.

(1)

(e)	The melting temperature of the recrystallised Organol Brown is measured to check its purity.			
	State what you would observe if the sample was pure.	(1)		
	(Total for Question 3 = 16 marks)			

TOTAL FOR PAPER = 50 MARKS

	0 (8)	(18) He hetium 2	20.2 Ne neon	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	pa		
	1	(71)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	een report	175 Lu lutetium 71	[257] Lr lawrencium
	9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have b ticated	173 Yb ytterbium 70	[254] No nobelium
	'n	(15)	14.0 N nitrogen 7	31.0 P phosphorus	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated	169 Tm thulium 69	[256] Md mendelevium
	4	(14)	12.0 C carbon 6	28.1 Silicon 14	72.6 Ge germanium 32	50 Sn So 50	207.2 Pb lead 82	atomic nun but not fu	167 Er erbium 68	[253] Fm fermium
	m	(13)	10.8 B boron 5	27.0 Al aluminium 13	Ga gallium s	114.8 In indium 49	204.4 T1 thallium 81	ents with	165 Ho holmium 67	[254] Es einsteinium
ents		(12)			65.4 Zn zinc 30	Cd Cd cadmium 48	200.6 Hg mercury 80	Eleme	163 Dy dysprosium 66	[251] [254] Cf Es californium einsteinium
Lieu			63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium	159 Tb terbium 65	[245] BK berkelium		
e of I				(01)	58.7 Ni nicket 28	Pd Pd palladium 46	Pt Pt platinum 78	Ds darmstadtium i	157 Gd gadolinium 64	[247] Cm
laD.				(6)	58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63	[243] Am americium
The Periodic Table of Elements		1.0 H Hydrogen 1		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu plutonium
ח				(0)	54.9 Mn manganese 25	[98] Tc technetium 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	238 [237] [242] [243] U Np Pu Am uranium neptunium plutonium americium
				mass ool umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] 101.1 Mo Tc Ru molybdenum technetium ruthenium 42 43 44	183.8 W tungsten 74	[266]	144 Nd neodymium 60
		Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50,9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 144 [147] 150 Pr Nd Pm Sm praecodymium neodymium promethium 59 60 61 62	[231] Pa protactinium
			relati ato atomic	<i>(</i> £)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce cerium 58	232 Th thorium
				(3)	45.0 Sc scandfum 21	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium 89	N N	
	7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
	F	(1)	6.9 Li lithium 3	Na Sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr franctum 87	* Lanth	